Tag Archives: forest

Scanning the Internet for Ecological Early Warnings

If Google Flu Trends can, why can’t we? The possibility to mine large amounts of individual reports and local news posted on the Internet as early warning signs of pending epidemic outbreaks has been a part of global epidemic governance for quite some time. The question is; could we do the same for ecological crises? A couple of years ago, a couple of colleagues and I wrote a conceptual piece in Frontiers entitled “Can webcrawlers revolutionize ecological monitoring?” where we elaborated issue. Until today however, the idea hasn’t moved much from its conceptual phase. Luckily, analysts and GIS-experts at the USDA Forest Service, now have begun to test the concept with real world data. In a new paper entitled “Internet Map Services: New portal for global ecological monitoring, or geodata junkyard?”, Alan Ager and colleagues, present initial results from runs with a geodata webcrawler . They report:
At the USDA Forest Service’s Western Wildland Environmental Threat Assessment Center (WWETAC), we are exploring webcrawlers to facilitate wildland threat assessments. The Threat Center was established by Congress in 2005 to facilitate the development of tools and methods for the assessment of multiple interacting threats (wildfire, insects, disease, invasive species, climate change, land use change)
The Threat News Explorer (see image) visualizes some of the results.

However, they also note that
much of the online data is stored in large institutional data warehouses (Natureserve, Geodata.gov, etc.) that have their own catalog and searching systems and are not open to webcrawlers like ours.  In fact, most federal land management agencies do not allow services to their data, but allow downloading and in-house viewers (i.e. FHTET 2006). This policy does not simplify the problem of integrated threat assessments for federal land management agencies.
The group is now developing a more powerful webcrawler. You can find and search the database for geospatial data and map here. Still a long way to go it seems, but a very important first step!

Mapping the world’s ‘intact’ forests

In the latest issue of Ecology and Society, Peter Potapov et al’s article Mapping the world’s intact forest landscapes by remote sensing. (Ecology and Society 13(2): 51). Shows a new map of global forests – showing the “intact forest” areas that are not directly transformed by human action.

World's intact forest

The world’s intact forest landscapes (IFLs): IFL (green), Forest zone outside IFL (yellow).

The authors define an intact forest area as:

as an unbroken expanse of natural ecosystems within the zone of current forest extent, showing no signs of significant human activity, and large enough that all native biodiversity, including viable populations of wide-ranging species, could be maintained. Although all IFLs are within the forest zone, some may contain extensive naturally treeless areas, including grasslands, wetlands, lakes, alpine areas, and ice.

The data can be downloaded from the projects website as tiff, google earth, or shapefiles.

Compared to other global forest areas assessments the authors found:

  • significantly less intact area in boreal forests than the World’s Wilderness Areas analysis (McCloskey and Spalding 1989) and the Frontier Forests analysis (Bryant et al. 1997) because of our more recent data allowing us to capture the effect of the expansion of oil and gas extraction infrastructure in Canada and Siberia, as well as the role of extensive human-caused fires accompanying industrial development of northern forests.
  • more intact areas in dense tropical forests (the Amazon and Congo basins) and in boreal mountains (southern and eastern Siberia, Kamchatka, Alaska, and the Canadian Rocky Mountains) than was found in previous studies based on coarse-scale map and expert data analysis.
  • the Human Footprint data set (Sanderson et al. 2002), which finds a significantly larger area to be intact within boreal regions and the southern part of the Amazon Basin in Brazil. Both areas were developed (by industrial logging and oil and gas extraction in Canada and Russia, and by agricultural clearing in Brazil) in recent decades, and these changes were not captured in the Human Footprint assessment.
  • in some regions (i.e., Central Africa, boreal forests in Siberia and Canada) we found a smaller area to be intact than the Human Footprint map because we classified burned areas in the vicinity of infrastructure as not intact.
  • The Landscape Domestication Analysis by The Nature Conservancy, which relied on existing transportation network maps, also overestimated the intact area (Kareiva et al. 2007).