Category Archives: Reorganization

Brian Walker’s Research Areas for Resilience Science

Brian Walker, the former director of the Resilience Alliance reflected on the future of resilience science in his introductory talk at Resilience 2008. In his talk Probing the boundaries of resilience science and practice, he identified seven important research areas for resilience science:

  1. Test, criticize and revise the propositions about resilience made in Panarchy: Understanding Transformations in Human and Natural Systems and Ecology and Society special issue – Exploring Resilience In Social-Ecological Systems.
  2. Develop models of social-ecological systems that can produce the key aspects of the rich behaviour of the world. In particular these models should be able to produce:
    i) dynamics in which systems cross multiple thresholds,
    ii) produce “backloop” dynamics, and
    iii) incorporate models of adaptive governance that incorporate leadership, trust, ‘shadow’ networks, sleeper links, and poly-centric governance arrangements.
  3. Extend resilience theory from local or regional scales to the global to address questions such as:
    i) Do we need new propositions for global resilience issues?
    ii) Over what ranges of scale can we apply existing theory?, and
    iii) How important are scale-dependent processes?
  4. Resilience theory needs to better understand the consquences of multiple simultaneous shocks, because transformative change seems to be often triggered by two (or more) simultaneous shocks. For example an environmental shock and an economic (or political) shock occurring at the same time.
    Resilience theory needs to understand what coupled or sequential shocks are likely, and how could we go about assessing resilience to them. An example of this is the current food crisis that developed from the coupling of agriculture, energy, and climate issues.
  5. What are the differences between transformational change, adaptability and resilience? Transformability is the capacity to create a fundamentally new system when conditions make the existing system untenable. In much of the world the need is to transform, not to make the existing system regime more resilient. What are the design principles of transformations?
  6. How can we assess the costs and values of resilience? What is the difference between general (broad spectrum resilience to many things) vs. specified resilience (to a few specific things)? How can we conceptualize the danger in ‘optimizing’ for specified resilience? How much should we spend (or forego) to increase resilience?
  7. How can the value of different regimes be assessed? The desirablity of a regime usually depends upon the perspective it is viewed from, and different people have different perspectives. Coping with these perspectives is a challenge. But more fundamentally, this requires not just assessing the value of different ecosystem services, but also understanding the identity of a system, and its ability to maintain itself.
  8. Non-mathematical approaches to resilience. While mathematics is beautiful to some, it is difficult to communicate and in some situations is insufficient. We need to increase our ability to represent resilience in a variety of forms. This presents a challenge to the humanities and arts community. At Resilience 2008 we saw contributions towards this understanding, but there is much more to develop. Can science and the humanities work together to provide the impetus towards a richer, more resilient world?

Using local ecological knowledge to rebuild ecological infrastructure

milpa terraces: http://www.goldmanprize.org/slideshow/user/289/767Jesús León Santos won a 2008 Goldman environmental prize for his work on land renewal by reinventing milpa agriculture. The prize website has a video on his work, and his speech on accepting the award is on youtube with English subtitles).

The improvements in crop yield and other ecosystem services from local investment in soil and ecological infrastructure sound similar to what Pretty et al found in their 2005 paper in in Environmental Science and Technology Resource Conserving Agricultural increases yields in developing countries.

In the May 13, 2008 International Herald Tribune Elisabeth Malkin writes about his work with the NGO he helped found in Using ancient ways to reclaim Mexico’s barren lands:

León and the farmers’ group he helped found, the Center for Integral Campesino Development of the Mixteca, or Cedicam, have reached into the past to revive pre-Hispanic practices. To arrest erosion, Cedicam has planted trees, mostly native ocote pines, a million in the past five years, raised in the group’s own nurseries.Working communally, the villagers built stone walls to terrace the hillsides and they dug long ditches along the slopes to halt the wash of rainwater that dragged the soil from the mountains. Trapped in canals, the water seeps down to recharge the water table and restore dried-up springs.

As the land has begun to produce again, León has reintroduced the traditional milpa, a plot where corn, climbing beans and squash grow together. The pre-Hispanic farming practice fixes nutrients in the soil and creates natural barriers to pests and disease.

Along the way, the farmers have modernized the ancient techniques.

León has encouraged farmers to use natural compost as fertilizer, introduced crop rotation and improved on traditional seed selection.

León plows with oxen by choice. A tractor would pack down the soil too firmly.

In the eight villages in the region where Cedicam has worked, yields have risen about three or fourfold, to about 1 to 1.5 metric tons per hectare, León said. Unlike the monocultures of mechanized farming, these practices help preserve genetic diversity.

León’s work is a local response to the dislocation created by open markets in the countryside.

“The people here are saying that we have to find a way to produce our food and meet our basic needs and that we can do it in a way that is sustainable,” said Phil Dahl-Bredine, a Catholic lay missionary and onetime farmer who has worked with Cedicam for seven years and written a book about the region.

The key to determining the project’s success, and that of similar projects in these highlands, will be if it can produce enough to sustain families during the bad years, said James Reynolds, a specialist in desertification at Duke University who visited Cedicam in April. The land of the Mixteca region is so degraded that “the overall potential is not that high,” he said.

Over the past two decades, the Mexican government has steadily dismantled most support for poor farmers, arguing that they are inefficient. About two-thirds of all Mexican corn farmers, some two million people, are small-scale producers, farming less than 5 hectares, or 12 acres, but they harvest less than a quarter of the country’s production.

After winning the award Jesús León Santos was interviewed by TierraAmérica:

TIERRAMÉRICA: — What does it mean to you and your organization to win the Goldman Prize?

JESÚS LEÓN SANTOS: — It has been the most important thing that has happened to me in a long time. This unites us with people who are conserving the environment and makes us stronger. The 150,000 dollars will go to a fund in my organization to continue developing our work. Imagine that! It represents the budget of an entire year. We manage some 100,000 dollars that come from European organizations.

TA: — To come up with and develop projects like yours in a poor area, with degraded land and high rates of emigration is an uphill battle. How did you begin?

JLS: — I became involved in this because when I was a boy I saw that we faced many difficulties. My parents sent me to look for firewood and I had to walk hours and hours because it was very scarce. The trees had disappeared. We thought that the Mixteca had to be green again, like it was in the past, and those were really only words because we didn’t know what to do. Then there came clarity, and 25 years later we see that we have achieved what we never imagined possible.

TA: — What are the most evident changes?

JLS: — Many people who come to the parcels say that it’s a paradise, and then I say that it is a paradise that has been created little by little. Today we enjoy the wood and the birds that for years we didn’t hear singing because there were no trees. The soil is beginning to change. When one walks through the trees, the sound made by our feet on the leaves was something we had never heard before.

TA: — What role did the pre-Hispanic techniques for cultivation and land conservation play in these achievements?

JLS: — In addition to planting trees and creating ditches to retain rainwater, we pushed the recovery of traditional farming systems, the “milpa”, which consists of planting maize, gourds, beans and others on the same parcel, using our seeds from our own harvests, without buying anything. This means the soils don’t deteriorate and it improves fertility.

Unlike monoculture, these systems not only provide a balanced diet, they conserve soil fertility. In the 1970s and 1980s, when they began using fertilizers and improved seeds here, this knowledge of our peoples was pushed out. But we have recovered it.

TA: — The genetically modified seed companies are asking Mexico to allow its maize varieties to be planted here because they say they are much more productive. What do you think?

JLS: — The GM seeds can be monsters in comparison to what nature has done. We can’t be playing with what is natural, and those companies are truly creating monsters that attack life, not just the native seeds but also ourselves. What I’d tell the seed companies is that they carry out campaigns that are not ethical, because they lie and they bribe governments.

TA: — But each year there are more and more GM crops in the world and their promoters argue that this technology has come to stay.

JLS: — To everyone who thinks that our ancient systems are a matter of romantic ideals we say that we are on the right path. What they are proposing is a disaster. When those modified seeds can’t be controlled, they can cause a global catastrophe.

Kim Stanley Robinson on nature, architecture, and society

Geoff Manaugh recently interviewed ecological science fiction writer Kim Stanley Robinson about ecology, architecture and socieities on BLDGBLOG.  Manaugh writes:

Robinson’s books are not only filled with descriptions of landscapes – whole planets, in fact, noted, sensed, and textured down to the chemistry of their soils and the currents in their seas – but they are often about nothing other than vast landscape processes, in the midst of which a few humans stumble along. “Politics,” in these novels, is as much a question of social justice as it is shorthand for learning to live in specific environments.

Robinson responds to a question about the idea that catastrophe can allow new forms of social organization to emerge:

It’s a failure of imagination to think that climate change is going to be an escape from jail – and it’s a failure in a couple of ways.

For one thing, modern civilization, with six billion people on the planet, lives on the tip of a gigantic complex of prosthetic devices – and all those devices have to work. The crash scenario that people think of, in this case, as an escape to freedom would actually be so damaging that it wouldn’t be fun. It wouldn’t be an adventure. It would merely be a struggle for food and security, and a permanent high risk of being robbed, beaten, or killed; your ability to feel confident about your own – and your family’s and your children’s – safety would be gone. People who fail to realize that… I’d say their imaginations haven’t fully gotten into this scenario.

It’s easy to imagine people who are bored in the modern techno-surround, as I call it, and they’re bored because they have not fully comprehended that they’re still primates, that their brains grew over a million-year period doing a certain suite of activities, and those activities are still available. Anyone can do them; they’re simple. They have to do with basic life support and basic social activities unboosted by technological means.

And there’s an addictive side to this. People try to do stupid technological replacements for natural primate actions, but it doesn’t quite give them the buzz that they hoped it would. Even though it looks quite magical, the sense of accomplishment is not there. So they do it again, hoping that the activity, like a drug, will somehow satisfy the urge that it’s supposedly meant to satisfy. But it doesn’t. So they do it more and more – and they fall down a rabbit hole, pursuing a destructive and high carbon-burn activity, when they could just go out for a walk, or plant a garden, or sit down at a table with a friend and drink some coffee and talk for an hour. All of these unboosted, straight-forward primate activities are actually intensely satisfying to the totality of the mind-body that we are.

So a little bit of analysis of what we are as primates – how we got here evolutionarily, and what can satisfy us in this world – would help us to imagine activities that are much lower impact on the planet and much more satisfying to the individual at the same time. In general, I’ve been thinking: let’s rate our technologies for how much they help us as primates, rather than how they can put us further into this dream of being powerful gods who stalk around on a planet that doesn’t really matter to us.

Because a lot of these supposed pleasures are really expensive. You pay with your life. You pay with your health. And they don’t satisfy you anyway! You end up taking various kinds of prescription or non-prescription drugs to compensate for your unhappiness and your unhealthiness – and the whole thing comes out of a kind of spiral: if only you could consume more, you’d be happier. But it isn’t true.

I’m advocating a kind of alteration of our imagined relationship to the planet. I think it’d be more fun – and also more sustainable. We’re always thinking that we’re much more powerful than we are, because we’re boosted by technological powers that exert a really, really high cost on the environment – a cost that isn’t calculated and that isn’t put into the price of things. It’s exteriorized from our fake economy. And it’s very profitable for certain elements in our society for us to continue to wander around in this dream-state and be upset about everything.

The hope that, “Oh, if only civilization were to collapse, then I could be happy” – it’s ridiculous. You can simply walk out your front door and get what you want out of that particular fantasy.

Building Transformation: CO2 emissions and change

According to the US government’s new report North American Carbon Budget and Implications for the Global Carbon Cycle buildings in North America contribute 37% of total CO2 emissions, while US buildings correspond to 10% of all global emissions (for more see Andrew Revkin’s weblog). This fact means that improving the environmental efficiency (in terms of carbon intensity) in the US has a big potential to reduce global emissions. The summary of Chapter 9 of the report writes:

The buildings sector of North America was responsible for annual carbon dioxide emissions of 671 million tons of carbon in 2003, which is 37% of total North American carbon dioxide emissions and 10% of global emissions. United States buildings alone are responsible for more carbon dioxide emissions than total carbon dioxide emissions of any other country in the world, except China.

USA CO2 emission sources

Carbon dioxide emissions from energy use in buildings in the United States and Canada increased by 30% from 1990 to 2003, an annual growth rate of 2.1% per year. Carbon dioxide emissions from buildings have grown with energy consumption, which in turn is increasing with population and income. Rising incomes have led to larger residential buildings and increased household appliance ownership.

These trends are likely to continue in the future, with increased energy efficiency of building materials and equipment and slowing population growth, especially in Mexico, only partially offsetting the general growth in population and income.

Options for reducing the carbon dioxide emissions of new and existing buildings include increasing the efficiency of equipment and implementing insulation and passive design measures to provide thermal comfort and lighting with reduced energy. Current best practices can reduce emissions from buildings by at least 60% for offices and 70% for homes. Technology options could be supported by a portfolio of policy options that take advantage of cooperative activities, avoid unduly burdening certain sectors, and are cost effective.

On WorldChanging Patrick Rollens writes the scale of expected construction in the USA. While construction contributes to CO2 emmissions, new infrastructure that is CO2 neutral or negative can substantially reduce emissions. Rollens reports on estmates that suggest that in about half of all buildings existing in 25 yearswill be new. This offers a great opportunity for both green building, but also building more green urban areas. In Remaking the Built Environment by 2030 he writes:

By 2030, about half of the buildings in America will have been built after 2000. This statistic, courtesy of Professor Arthur C. Nelson’s report for the Brookings Institution, means that over the next 25 years, we will be responsible for re-creating half the volume of our built environment.

The report has been around since 2004, but Nelson re-examined his own findings last year to see if the housing market’s downturn impacted the forecast. The sheer volume was essentially unchanged, and the mainstreaming of the green movement that’s occurred in the last two years presents a colossal challenge–and a magnificent opportunity–for the burgeoning sustainable building industry.

Nelson’s report states that the country will need about 427 billion square feet of space (up from 2000’s total volume of just 300 billion). Moreover, only a small portion of this space can be acquired by renovating existing real estate. We’re already well on our way; the U.S. Green Building Council estimates that we’re developing about twice times as fast as the associated population growth. Every new building built between now and 2030 should be seen as an opportunity to push the envelope and transform our structured world.

Taleb on the failures of financial economics

Nassim Nicholas Taleb writes in Financial Times that because financial economics focus on normal and marginal behaviour at the expense of shocks and market reorganizations it is a pseudo-science hurting markets:

I was a trader and risk manager for almost 20 years (before experiencing battle fatigue). There is no way my and my colleagues’ accumulated knowledge of market risks can be passed on to the next generation. Business schools block the transmission of our practical know-how and empirical tricks and the knowledge dies with us. We learn from crisis to crisis that MPT [modern portfolio theory] has the empirical and scientific validity of astrology (without the aesthetics), yet the lessons are ignored in what is taught to 150,000 business school students worldwide.

Academic economists are no more self-serving than other professions. You should blame those in the real world who give them the means to be taken seriously: those awarding that “Nobel” prize.

In 1990 William Sharpe and Harry Markowitz won the prize three years after the stock market crash of 1987, an event that, if anything, completely demolished the laureates’ ideas on portfolio construction. Further, the crash of 1987 was no exception: the great mathematical scientist Benoît Mandelbrot showed in the 1960s that these wild variations play a cumulative role in markets – they are “unexpected” only by the fools of economic theories.

Then, in 1997, the Royal Swedish Academy of Sciences awarded the prize to Robert Merton and Myron Scholes for their option pricing formula. I (and many traders) find the prize offensive: many, such as the mathematician and trader Ed Thorp, used a more realistic approach to the formula years before. What Mr Merton and Mr Scholes did was to make it compatible with financial economic theory, by “re-deriving” it assuming “dynamic hedging”, a method of continuous adjustment of portfolios by buying and selling securities in response to price variations.

Dynamic hedging assumes no jumps – it fails miserably in all markets and did so catastrophically in 1987 (failures textbooks do not like to mention).

Later, Robert Engle received the prize for “Arch”, a complicated method of prediction of volatility that does not predict better than simple rules – it was “successful” academically, even though it underperformed simple volatility forecasts that my colleagues and I used to make a living.

The environment in financial economics is reminiscent of medieval medicine, which refused to incorporate the observations and experiences of the plebeian barbers and surgeons. Medicine used to kill more patients than it saved – just as financial economics endangers the system by creating, not reducing, risk. But how did financial economics take on the appearance of a science? Not by experiments (perhaps the only true scientist who got the prize was Daniel Kahneman, who happens to be a psychologist, not an econ­omist). It did so by drowning us in mathematics with abstract “theorems”. Prof Merton’s book Continuous Time Finance contains 339 mentions of the word “theorem” (or equivalent). An average physics book of the same length has 25 such mentions. Yet while economic models, it has been shown, work hardly better than random guesses or the intuition of cab drivers, physics can predict a wide range of phe­nomena with a tenth decimal precision.

via 3quarks daily.

For more see Taleb’s home page – Fooled by Randomness.

Water in the American West: Learning from Crisis

Jon Gertner writes in The Future Is Drying Up a New York Times Magazine about Water in the American West. The articles is discusses how increases in population and decreases in precipitation are reorganizing the US inland west. It includes some insightful comments from Roger Pulwarty, a climatologist at NOAA who looks at adaptive solutions to drought. He sounds a bit like Emory University ecological management scientist Lance Gunderson:

You don’t need to know all the numbers of the future exactly,” Pulwarty told me over lunch in a local Vietnamese restaurant. “You just need to know that we’re drying. And so the argument over whether it’s 15 percent drier or 20 percent drier? It’s irrelevant. Because in the long run, that decrease, accumulated over time, is going to dry out the system.” Pulwarty asked if I knew the projections for what it would take to refill Lake Powell, which is at about 50 percent of capacity. Twenty years of average flow on the Colorado River, he told me. “Good luck,” he said. “Even in normal conditions we don’t get 20 years of average flow. People are calling for more storage on the system, but if you can’t fill the reservoirs you have, I don’t know how more storage, or more dams, is going to help you. One has to ask if the normal strategies that we have are actually viable anymore.”

Pulwarty is convinced that the economic impacts could be profound. The worst outcome, he suggested, would be mass migrations out of the region, along with bitter interstate court battles over the dwindling water supplies. But well before that, if too much water is siphoned from agriculture, farm towns and ranch towns will wither. Meanwhile, Colorado’s largest industry, tourism, might collapse if river flows became a trickle during summertime. Already, warmer temperatures have brought on an outbreak of pine beetles that are destroying pine forests; Pulwarty wonders how many tourists will want to visit a state full of dead trees. “A crisis is an interesting thing,” he said. In his view, a crisis is a point in a story, a moment in a narrative, that presents an opportunity for characters to think their way through a problem. A catastrophe, on the other hand, is something different: it is one of several possible outcomes that follow from a crisis. “We’re at the point of crisis on the Colorado,” Pulwarty concluded. “And it’s at this point that we decide, O.K., which way are we going to go?”

For some photos see NASA, and a graph of the water levels in Lake Mead showing the longterm decline in water storage.

Transforming Universities

All my career my work was launched from a disciplinary base, but grew from developing an interdisciplinary character. And now some of the best of natural and social sciences is just that – complexity theory, for example is a lovely mix of just about any discipline imaginable, infused with the idea of complex adaptive system theory. And the practice of living in our world now is infused with the same spirit and the recognition of the power of the uncertain and unknown. That simply is delightful.

I was always in a situation where I could be interdisciplinary , but I carefully nurtured the needs to maintain disciplinary roots. And my courses drew upon grad students from just about any discipline imaginable – to their benefit, and my own.

I once asked the President of the University of Florida in a public meeting, what his image of a future university was. His answer, basically, was “just the same as it has always been”. I had been hoping for an answer closer to what this Nature editorial – The university of the future – presents. This editorial speaks very much to the future I see , one very much being attempted at ASU. Our Resilience Alliance has one of those interdisciplinary teams as a member and that enriches us all.

The American research university is a remarkable institution, long a source of admiration and wonder. …

Seen from the inside, however, everything is not quite so rosy. … the structure of these institutions is straightforward and consistent. The bedrock of each university is a system of discipline-specific departments. The strength of these departments determines the success and prestige of the institution as a whole.

This structure raises a few obvious questions. One is the relevance of the department-based structure to the way scientific research is done. Many argue that in a host of areas — ranging from computational biology and materials science to pharmacology and climate science — much of the most important research is now interdisciplinary in nature. And there is a sense that, notwithstanding years of efforts to adapt to this change by encouraging interdisciplinary collaboration, the department-based structure of the university is essentially at odds with such collaboration.

Continue reading

Gelman’s notes on Black Swans

Noted Bayesian statistician Andrew Gelman writes his notes on Nassim Taleb‘s book the Black Swan:

As I noted earlier, reading the book with pen in hand jogged loose various thoughts. . . . The book is about unexpected events (“black swans”) and the problems with statistical models such as the normal distribution that don’t allow for these rarities. From a statistical point of view, let me say that multilevel models (often built from Gaussian components) can model various black swan behavior. In particular, self-similar models can be constructed by combining scaled pieces (such as wavelets or image components) and then assigning a probability distribution over the scalings, sort of like what is done in classical spectrum analysis of 1/f noise in time series. For some interesting discussion in the context of “texture models” for images, see the chapter by Yingnian Wu in my book with Xiao-Li on applied Bayesian modeling and causal inference. (Actually, I recommend this book more generally; it has lots of great chapters in it.)

That said, I admit that my two books on statistical methods are almost entirely devoted to modeling “white swans.” My only defense here is that Bayesian methods allow us to fully explore the implications of a model, the better to improve it when we find discrepancies with data. Just as a chicken is an egg’s way of making another egg, Bayesian inference is just a theory’s way of uncovering problems with can lead to a better theory. I firmly believe that what makes Bayesian inference really work is a willingness (if not eagerness) to check fit with data and abandon and improve models often.

update: Gelman follows up on his comments with:

Dan Goldstein and Nassim Taleb’s paper writes: “Finance professionals, who are regularly exposed to notions of volatility, seem to confuse mean absolute deviation with standard deviation, causing an underestimation of 25% with theoretical Gaussian variables. In some fat tailed markets the underestimation can be up to 90%. The mental substitution of the two measures is consequential for decision making and the perception of market variability.”

This interests me, partly because I’ve recently been thinking about summarizing variation by the mean absolute difference between two randomly sampled units (in mathematical notation, E(|x_i-x_j})), because that seems like the clearest thing to visualize. Fred Mosteller liked the interquartile range but that’s a little too complicated for me, also I like to do some actual averaging, not just medians which miss some important information. I agree with Goldstein and Taleb that there’s not necessarily any good reason for using sd (except for mathematical convenience in the Gaussian model).

 

Black Swans: expecting the unexpected

black swan book coverNassim Nicholas Taleb uses the term Black Swan to identify significant unexpected events. Holling made some similar points from a different perspective in his 1973 paper on resilience and his 1986 paper the resilience of terrestrial ecosystems; local surprise and global change. In on the interdisciplinary Edge Taleb writes on Learning to expect the unexpected and defines what he means by Black Swans:

A black swan is an outlier, an event that lies beyond the realm of normal expectations. Most people expect all swans to be white because that’s what their experience tells them; a black swan is by definition a surprise. Nevertheless, people tend to concoct explanations for them after the fact, which makes them appear more predictable, and less random, than they are. Our minds are designed to retain, for efficient storage, past information that fits into a compressed narrative. This distortion, called the hindsight bias, prevents us from adequately learning from the past.

From my perspective, Black swans occur when there are significant mismatches between the models people use to understand the world and the subsquent expectations that those models produce and observations. In other words, black swans are model errors – something that I’ve written (Peterson, Carpetner & Brock et al 2003) in the context of ecological management.

Continue reading

What is this Panarchy Thing? : Reflections Pt 11

panarchy“Panarchy” is an odd name, but one that is meant to capture the way living systems both persist and yet innovate. It shows how fast and slow, small and big events and processes can transform ecosystems and organisms through evolution, or can transform humans and their societies through learning, or the chance for learning. The central question is what allows rare transformation, not simply change.

I have discovered people have two distinct ways of perceiving change. Some see the world evolving in a regular, continuous way. Others, like me, see the world evolving in a spasmodic way- sudden change and slow, sometimes erratic responses after such changes. Both viewpoints are, in some sense true. They each give a different perception of changes and its causes. But their differences generate arguments. The same arguments are seen in other issues. For example, some argue that biological evolutionary change is not gradual but is “punctuated”. There is lots of evidence supporting that view, but because the fossil record is incomplete, the evidence is incomplete. As a consequence, one’s philosophy dictates belief, so there is not a lot of consensus. There is a similar argument about the evolution of scientific knowledge between the gradualists like Popper, and the revolutionists like Thomas Kuhn. We saw the same difference in view among our good archaeologist friends.

Terrific to have these different views appearing in a way that permits some considered conversation. Now is the time!!!

The aspect of Panarchy that is most novel and significant concerns the phase when resisting institutions start to break down or transform, releasing the chance for a renewed system to emerge. At that moment, novelty that had been simmering in the background can emerge and be debated. And new associations begin to develop among previously separate innovations. The big influence comes from discoveries that, at that time, emerge from people’s local experiments at small scales, discoveries that can emerge at times of big change, to trigger bigger changes at large scales. That process highlights the keys for the future.

One key is maybe best captured by the word “hope”. I see hope might be emerging in the US from the results of the recent mid-term election in 2006. Certainly the results of that election have triggered a sudden storm of new and intelligent, but confused discussion. That is just what Panarchy predicts, and it certainly makes me suddenly a little more hopeful about our mid-term future.

The second key has to recognize that the small, that is the individual human, can at times transform the big, that is the politics and institutions of governance. But there are traps, and their potential needs some discussion.

The multi-authored book describing the integrative nature of Panarchy (Gunderson and Holling 2002) is partly a culmination of 50 years of my own research work, together with that of a fine group of friends and colleagues in the Resilience Project. During that project, my ideas expanded and grew as they interacted with the ideas of others- other ecologists, economists, social scientists and mathematicians – all co-authors of Panarchy. Some of those were senior and well established colleagues. Others were younger colleagues who became both the nurturers and nurtured in the work. It was a process of mutual, creative discovery that then turned personal for each of us.

For me, over those 50 years the old notion of stable ecological systems embedded in the equilibrium images of Lotka-Volterra equations, moved to that of resilience and multi-stable states (Holling 1973, Carpenter 2000), then to cycles of adaptive change where persistence and novelty entwined (Holling 1986), then to nested sets of such cycles in hierarchies of diversity covering centimeters to hundreds of kilometers, days to millennia (Holling 1992) and then to the transformations that can cascade up the scales with small fast events affecting big slow ones (Holling et al 2002) as acts of “revolution”.

Jargon, yeah. So, Lance Gunderson, Garry Peterson and I said, why not go “whole hog” and invent the term “Panarchy” for the ideas, by drawing on the mischievous Greek God Pan, the paradoxical Spirit of Nature. Join Pan, then, to the dynamic reality of hierarchies across scales, where nature self-organizes lumps of living stuff on a more continuous physical template described by power laws. Physics defines the attributes of the power law. Biology self-organizes concentrations of opportunity and of species along the power law relation. Social dynamics do the same for social structures and organizations.

Part of that organization is maintained by diversity within a scale and across scales (Peterson et al 1998 and Walker et al 1999), a uniquely panarchical representation of the role of diversity in maintaining a sustainable system. For ecosystems and landscapes, all this is arranged over an interactive scale from centimeters and days to hundreds of kilometers and millennia. Nothing static- all components flipping from quiet to noise, from collapse to renewal. Transformation is not easy and gradual. It is tough and abrupt.

It seemed to become clear why and how persistence and extinction, growth and constancy, evolution and collapse entwined to form a panarchy of adaptive cycles across scales. Hierarchy and adaptive cycles can combine to make healthy systems over scales from the individual to the planet. Over days to centuries. The panarchy shows that we benefit from local inventions that create larger opportunity while being kept safe from those that destabilize because of their nature or excessive exuberance. When innovation occurs we can sense its fate. When collapse looms we can judge its likelihood. And the timing and kind of responses to this swinging, turbulent process can be designed as an act of strategic decision. Sustainability both conserves and creates. So does biological evolution.

But it can also build dependencies, some of which become pathological blocks to constructive change. They create traps, and those require the most searching investigation now.

References

  • Gunderson, L.H and C.S. Holling (eds) 2002 Panarchy: Understanding Transformations in Human and Natural Systems. Island Press, Washington and London.
  • Holling, C.S. 1992. Cross-scale morphology, geometry and dynamics of ecosystems. Ecological Monographs. 62(4):447-502.
  • Holling, C. S., Lance G. Gunderson and Garry D. Peterson. 2002. Sustainability and Panarchies. In. Gunderson, L.H and Holling, C.S (eds) Panarchy: Understanding Transformations in Human and Natural Systems. Island Press, Washington and London, Chapter 3,, 63-102.
  • Holling, C.S. 1973. Resilience and stability of ecological systems. Ann. Rev. of Ecol. and Syst. 4: 1-23.
  • Peterson, G., C. R. Allen, C. S. Holling.  1998. Ecosystem Resilience, Biodiversity, and Scale. Ecosystems 1: 6-18.
  • Walker, B.H., Kinzig, A., and Langridge, J. 1999. Plant attribute diversity, resilience, and ecosystem function: The nature and significance of dominant and minor species. Ecosystems. 2: 1-20.