Tag Archives: dead zone

Regime shifts in the Gulf of Mexico

Regime shifts in the Gulf of MexicoEugene Turner, Nancy Rabalais, and Dubravko Justic‘s recent article Gulf of Mexico Hypoxia: Alternate States and a Legacy (Env. Sci. Tech., 2008 42(7) 23232327) suggests that benthic carbon in the coastal benthic may be a critical slow variable regulating coastal hypoxia. As organic matter accumulates in sediments it demands increasing amounts of oxygen, making the area more vulnerable to nutrient driven hypoxia.

The Gulf of Mexico is one of the most studied coastal hypoxic zones in the world, but it is not the only one. The number of these zones has greatly increased, primarily due to agricultural expansion and intensification (one of the many ways that agriculture has been driving ecological regime shifts). The authors compare changes in coastal hypoxia in the Gulf of Mexico to that found in the Baltic Sea, which has also been suggested to have undergone a regime shift. The authors conclude:

… there has been a system-wide response to the combination of organic buildup in the sediments and higher nitrogen loading, which has increased the area of hypoxia generated for a given nitrogen load and has increased the opportunity for hypoxia to develop. The results discussed above demonstrate that the average [nitrogen] loading of the 1980s would result in a hypoxic zone that is twice as large in the past decade.

…Hypoxia has well-documented catastrophic consequences to the benthos, including animals with multiyear life spans, and creates large areas without commercial quantities of shrimp and fish. The changes in the Mississippi River-influenced continental shelf over the last 30–40 years should be considered to a shift to an alternate state in the sense that (A) the threshold for hypoxia development has been exceeded on a continuing basis and the size of the hypoxic zone has increased and may be approaching its maximum size, given physical constraints on shelf geometry (e.g., width, depth, and length); and (B) the return to a previous system state is more difficult the longer that the current level of nutrient loading is stable or increasing.

… respiratory demand in the sediments remains a legacy influencing water quality of the eutrophied continental shelf in the northern Gulf of Mexico. …The goal of reducing the size of the hypoxic zone to 5000 km2 thus becomes more difficult to achieve for every year without a significant reduction in nutrient loading. Each year without reducing the nutrient loading rates means that it will take longer to realize the Action Plan goal, because the legacy of accumulated organic matter and its respiratory demand increases with time.

The Mississippi dead zone will grow due to this year’s floods

Low oxygen anoxic zones due to excess nutrient runoff from agriculture and are increasingly common worldwide. On Maribo Simon Donner writes about how the ongoing floods in the upper Mississippi are likely to produce the largest ever ‘dead zone’ in the Gulf of Mexico. Simon writes:

Nitrogen applied to crops like corn in the Midwest is the major driver of the now famous Dead Zone, as I’ve described in a number of previous posts and this Google News commentary. The blame for the high nitrogen levels in the Mississippi and this year’s record Dead Zone forecast is being placed on the production of more corn for ethanol. A more complete explanation would be that the surge in corn production, and, hence, fertilizer use, the past few years has made nitrogen pollution more sensitive to the climate than ever.

Nitrogen and hydrology are tightly linked in the Mississippi River Basin, and other agriculturally intensive river basins, thanks to nature and to humans. Several nitrogen ‘species’ like nitrate are highly soluble. What has exacerbates things in the Mississippi is activities like wetlands, installing artificial drainage under fields and channelizing rivers that reduce chances for nitrogen to be consumed before moving downstream. The result is the amount of nitrogen that the Mississippi sends to the Gulf can actually be predicted from the rainfall in the Corn Belt.

In coverage of our recent paper on corn and the Dead Zone, the prediction that the US Energy Policy would increase average nitrogen loading by 10-34% drew most of the attention. What might be missed is that the nitrogen loading could be much higher if the conditions are wetter.

The reason this matters is the the continental shelf of the Gulf of Mexico has a memory. The usual tale is that the Dead Zone grows each spring and summer when the big flood of Mississippi nitrogen arrives weather and water conditions are ripe for algae growth (it breaks up in the fall when the waters cool and mix, reintroducing oxygen to the bottom waters). However, nitrogen from previous years that is deposited in the sediments can also be recycled and feed algae growth. In other words, the system remembers a big flood of nitrogen. For example, during the 1993 Mississippi floods, the Dead Zone grew to a then-record 17,600 km2; the next year, it grew to an almost equal 16,600 km2, despite 31% less nitrate flowing down the Mississippi. That’s just one reason why it is critical to consider climate and climate variability in ecological management and policy.

This year, the Dead Zone is projected to reach over 25,000 km2 in size, 20% greater than the previous maximum. What will that mean for 2009? For 2010? The longer you wait, the harder problem like the Dead Zone are to solve.