Recent papers on ecological resilience

1. Hughes TP, Graham NA, Jackson JB, Mumby PJ, Steneck RS. 2010  Rising to the challenge of sustaining coral reef resilienceTrends in Ecology and Evolution. [epub]

Phase-shifts from one persistent assemblage of species to another have become increasingly commonplace on coral reefs and in many other ecosystems due to escalating human impacts. Coral reef science, monitoring and global assessments have focused mainly on producing detailed descriptions of reef decline, and continue to pay insufficient attention to the underlying processes causing degradation. A more productive way forward is to harness new theoretical insights and empirical information on why some reefs degrade and others do not. Learning how to avoid undesirable phase-shifts, and how to reverse them when they occur, requires an urgent reform of scientific approaches, policies, governance structures and coral reef management.

2. Côté IM, Darling ES, 2010 Rethinking Ecosystem Resilience in the Face of Climate Change. PLoS Biol 8(7): e1000438.

In this Perspective, we will argue that the expectation of increased resilience of natural communities to climate change through the reduction of local stressors may be fundamentally incorrect, and that resilience-focused management may, in fact, result in greater vulnerability to climate impacts. We illustrate our argument using coral reefs as a model. Coral reefs are in an ecological crisis due to climate change and the ever-increasing magnitude of human impacts on these biodiverse habitats [11],[12]. These impacts stem from a multiplicity of local stressors, such as fishing, eutrophication, and sedimentation. It is therefore not surprising that the concept of resilience—to climate change in particular—is perhaps more strongly advocated as an underpinning of management for coral reefs than for any other ecosystem [9],. Marine reserves or no-take areas, the most popular form of spatial management for coral reef conservation, are widely thought to have the potential to increase coral reef resilience [11],[13],[14],[17]. But do they really?

3. Brock, W. A., and S. R. Carpenter. 2010. Interacting regime shifts in ecosystems: implication for early warnings. Ecological Monographs 80:353–367.

Big ecological changes often involve regime shifts in which a critical threshold is crossed. Thresholds are often difficult to measure, and transgressions of thresholds come as surprises. If a critical threshold is approached gradually, however, there are early warnings of the impending regime shift. …  Interacting regime shifts may muffle or magnify variance near critical thresholds. Whether muffling or magnification occurs, and the size of the effect, depend on the product of the feedback between the state variables times the correlation of these variables’ responses to environmental shocks.

4. Dawson, T.P., Rounsevell, M.D.A., Kluvánková-Oravská, T., Chobotová, V. & Stirling, A. 2010. Dynamic properties of complex adaptive ecosystems: implications for the sustainability of service provision. Biodiversity and Conservation. 19(10) 2843-2853.

Predicting environmental change and its impacts on ecosystem goods and services at local to global scales remains a significant challenge for the international scientific community. … Social-Ecological Systems (SES) theory addresses these strongly coupled and complex characteristics of social and ecological systems. It can provide a useful framework for articulating contrasting drivers and pressures on ecosystems and associated service provision, spanning different temporalities and provenances. Here, system vulnerabilities (defined as exposure to threats affecting ability of an SES to cope in delivering relevant functions), can arise from both endogenous and exogenous factors across multiple time-scales. Vulnerabilities may also take contrasting forms, ranging from transient shocks or disruptions, through to chronic or enduring pressures. Recognising these diverse conditions, four distinct dynamic properties emerge (resilience, stability, durability and robustness), under which it is possible to maintain system function and, hence, achieve sustainability.

Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>