Geography and Genes

From the New York Times reporting on an article by Oscar Lao and others in Current Biology:

A genetic map of Europe

The map shows, at right, the location in Europe where each of the sampled populations live and, at left, the genetic relationship between these 23 populations. The map was constructed by Dr. Kayser, Dr. Oscar Lao and others, and appears in an article in Current Biology published on line on August 7.

The genetic map of Europe bears a clear structural similarity to the geographic map. The major genetic differences are between populations of the north and south (the vertical axis of the map shows north-south differences, the horizontal axis those of east-west). The area assigned to each population reflects the amount of genetic variation in it.

Data for the map were generated by gene chips programmed to test and analyze 500,000 sites of common variation on the human genome, although only the 300,000 most reliable sites were used for the map. Dr. Kayser’s team tested almost 2,500 people and analyzed the data by correlating the genetic variations in all the subjects. The genetic map is based on the two strongest of these sets of correlations [the principal components used to plot the data above - these explained 31.6% and 17.3%, of the total variation.  The potential geographic basis of these two PCs was supported by a positive correlation (r2 = 0.6) between the genetic and  geographic distances among the samples.].

The gene chips require large amounts of DNA, more than is available in most forensic samples. Dr. Kayser hopes to identify the sites on the human genome which are most diagnostic for European origin. These sites, if reasonably few in number, could be tested for in hair and blood samples, Dr. Kayser said.

Genomic sites that carry the strongest signal of variation among populations may be those influenced by evolutionary change, Dr. Kayser said. Of the 100 strongest sites, 17 are found in the region of the genome that confers lactose tolerance, an adaptation that arose among a cattle herding culture in northern Europe some 5,000 years ago. Most people switch off the lactose digesting gene after weaning, but the cattle herders evidently gained a great survival advantage by keeping the gene switched on through adulthood.

Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>